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INTRODUCTION AND BACKGROUND 
 
 The predictive capacity of an assay being validated is frequently expressed by comparing 
the results obtained with the assay being validated on a sample of chemicals with the results of 
reference values on the same chemicals where the reference assay results are taken as the true 
values.  The reference data may be generated from an original test that the new test is replacing, 
it may be in vivo data, or it can be other data that is considered to be authoritative and an 
appropriate basis for the evaluation of the predictive capacity of the assay being validated. 
 
Objectives 
 
 This report addresses the precision of the estimates of the Cooper statistics as a function 
of the number and choice of chemicals sampled from the underlying population of chemicals.  It 
illustrates the change in precision of the estimates as the sample size increases and provides an 
indication of the numbers of chemicals needed to estimate the Cooper statistics reasonably 
precisely.  In particular it addresses the question of whether meaningful estimates of the 
parameters typically used in these comparisons can be obtained based on relatively small 
numbers of reference chemicals, such as one to two dozen.  One important variable that was 
assumed for these comparisons was the proportion of the universe of chemicals that are 
endocrine disruptors (the probability of a true positive or positive prevalence, denoted by τ).  
Three scenarios were investigated: with τ = 0.01, 0.05, and 0.1) 
 
Cooper Statistics 
 
 In the case when the assay being evaluated and reference values are expressed simply as 
positive or negative, the outcome of the test assay validation study can be displayed in a 2H2 
matrix whose rows represent the reference results and whose columns represent the test assay 
results.  Such a 2H2 matrix is shown below for test results for the complete applicability domain 
or portion of the universe of chemicals to which the test applies (Designated as the population).  
N= the number of chemicals in the population. N+ represents the number of positives and N–, the 
number of negatives.  The entries A, B, C, and D represent numbers of chemicals and total to N.  
. 
 

 

Test Method Values  
Population Frequencies  Positive Negative Total 

Positive A B N+ / A+B 

Negative  C D N– / C+D Reference 
Values 

Total A+C B+D N/A+B+C+D 
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The 2H2 matrices displaying the results of test assay validation studies are often summarized by 
various characteristics of the test assay and the population of chemicals. In medical and  
toxicological applications they are sometimes referred to as “Cooper statistics” (Cooper et. al, 
1979). 
 
 Cooper et al. summarize the performance of an assay (+ or -) in the particular population 
under consideration by the following population based characteristics: 
 
(1) Sensitivity / Prob [Assay Predicts Positive| True Positive]= A/(A+B) / A/N+ / SNS 
(2) Specificity / Prob [Assay Predicts Negative| True Negative] = D/(C+D) / D/N– / SPC 
(3) Positive Predictivity / Prob [True Positive|Assay Predicts Positive] = A/(A+C) / PP 
(4) Negative Predictivity / Prob [True Negative|Assay Predicts Negative] = D/(B+D) / NP 
(5) Concordance / Prob [Truth and Test Assay Prediction Agree] = (A+D)/(A+B+C+D) / 

(A+D)/N 
 
 In addition, an important population characteristic that can affect the values of the 
summary characteristics is the probability that a randomly chosen chemical is positive.  Namely 
 
(6) Probability of True Positive / Prob [True Positive] = (A+B)/(A+B+C+D) / (A+B)/N / J 
 
 Sensitivity and specificity are characteristics of the test on this particular population of 
chemicals.  Probability of true positive is a characteristic of the population of chemicals.  
 
Reference Chemicals (a sample of the applicability domain) 
 
 Since the values in the above table are population values, they are usually unknown and 
need to be estimated from a sample. If a simple random sample of n chemicals is drawn from 
the population of N chemicals the  sensitivity, specificity, positive predictivity, negative 
predictivity, concordance, and probability of true positive can each be estimated by substituting 
the sample frequencies a, b, c, d for the population frequencies in the expressions shown above.  
Depending upon the appropriate marginal totals, statistical inferences about these parameters can 
be based on the binomial distribution or the multinomial distribution. 
 
 Let a, b, c, d represent corresponding frequencies from a sample of n chemicals from the 
population of N chemicals (e.g. N = 9,000; n=200).  The sample results can be displayed in a 
corresponding 2H2 matrix. 
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Test Method Values  
Sample Frequencies  Positive Negative Total 

Positive a b n+ / a+b 

Negative  c d n– / c+d Reference 
Values 

Total t+ /a+c t– / b+d n/a+b+c+d 
 
 
 The sample of n chemicals can be drawn from the population of N chemicals in various 
ways. 
 
$ A simple random sample of chemicals can be drawn from the population.  In this case all the 

marginal totals are random. 
$ The frequencies n+ and n– can be fixed (e.g. n+ = 100,  n– = 100) and random samples of size 

n+ and n– drawn from the subpopulations of true positive chemicals and true negative 
chemicals respectively. 

$ The frequencies t+ and t– can be fixed (e.g. t+ = 80, t– = 120) and random samples of size t+ 
and t– drawn from the subpopulations of test positive chemicals and test negative chemicals 
respectively. 

 
These sample types can be mixed and matched.  Each type of sample permits direct estimation of 
different population characteristics. 
 
A simple random sample from the population 
 
 If stratified random samples of n+ chemicals from the population of N+ true positive 
chemicals and n– chemicals from the population of N– true negative chemicals are drawn, 
sensitivity and specificity can each be estimated by substituting the sample frequencies a, b, c, d 
for the population frequencies in the expressions shown above.  Statistical inferences about these 
parameters can be based on the binomial distribution.  However since the proportions n+/n, n-/n 
of true positive and true negative chemicals in the sample are specified by the sampling design 
and are not related to the proportions N+/N, N-/N of true positive and true negative chemicals in 
the population, positive predictivity, negative predictivity, concordance, and probability of true 
positive cannot be estimated by simply substituting sample frequencies for population 
frequencies.  However,  if the probability of  a true positive / J can be estimated from outside 
the sample, positive predictivity and negative predictivity can be expressed in terms of 
sensitivity,  specificity, and J by Bayes’ rule.  Namely 
 
(7) Positive Predictivity / PP = SNSHJ/[SNSHJ + (1-SPC)H(1-J)]  
 
(8) Negative Predictivity / NP =  
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      SPCH(1-J)/[SPCH(1-J) + (1-SNS)HJ] / 1 - {(1-SNS)HJ/[SPCH(1-J) + (1-SNS)HJ]} 
 
Fixed frequencies of test results (t+ and t–)  
 
 Similar considerations apply under the third sampling scheme, but with the roles of 
(sensitivity, specificity) and (positive predictivity, negative predictivity) reversed.  Namely if the 
population probability Prob [Assay Predicts Positive] / D can be estimated from outside the 
sample (e.g. by running the test assay on all or on a sample of the chemicals in the population),  
sensitivity and specificity can be expressed in terms of positive predictivity, negative 
predictivity, and D. 
 
 The implications of these relations are that all the Cooper statistics can be estimated 
without having to perform the test assay on a strictly random sample of chemicals.  A random 
sample of chemicals from the population, stratified random samples based on the results of the 
reference method, or stratified random samples based on the results of the test assay can be 
drawn.  These sampling strategies can also be mixed and matched and the results combined as 
appropriate.  
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Methods 
 
 The results are based on a Monte Carlo study that was carried out to estimate the 
sensitivity of the Cooper statistics estimates as the number of reference chemicals sampled varies 
and as the allocation of the sampled chemicals among true positives and true negatives varies.  It 
is assumed that the reference status for each of the sampled chemicals is known, based on 
literature reports from well established assays that were carried out on them and/or on the  
agreement of test results among multiple assays and/or multiple laboratories. 
 
 In the Monte Carlo study the number of true positive chemicals sampled, n+, and the 
number of true negative chemicals sampled, n–, are assumed to be fixed.  Thus sensitivity and 
specificity can be estimated based on substituting sample values in expressions (1) and (2).  
However positive predictivity and negative predictivity must be estimated based on substituting 
the estimates of sensitivity and specificity into expressions (7) and (8).  The value of J is 
assumed to be known. 
 
 A sensitivity analysis was carried out to determine the effects of variation in  n+, n–, and J 
on the inference precision of the Cooper statistics estimates.  The population values of SNS and 
SPC were fixed and the values of n+, n–, and J were varied over specified ranges.  Given the 
assumed population values of SNS, SPC, and J the population values of PP and NP are uniquely 
determined from relations (7) and (8).    
 
 For each combination of (SNS, SPC, J, n+, n–) 1,000 simulated frequencies, a and d, were 
generated based on 1,000 independent binomial random variates with distributions 
binomial(n+,SNS) and binomial(n–,SPC) respectively.  This sampling scheme assumes that the 
sampled chemicals are independent.  The question of dependence among the results of the test 
assay among different chemicals will be discussed later in the report. 
 
 For each of the 1,000 simulated frequencies, a and d, sensitivity and specificity were 
estimated as  
 

sns = a/n+,     spc=d/n–  
 
Estimates of positive and negative predictivity were obtained by substituting sns and spc into 
expressions (7) and (8) above, respectively.  Across the 1,000 simulations this generated 
empirical probability distributions for sensitivity, specificity, positive predictivity, and negative 
predictivity.  The 95% confidence intervals for the Cooper statistics were taken to be the 2.5th 
and the 97.5th percentiles of the empirical probability distributions. 
 
 Two combinations of the population values SNS and SPC were assumed: 
 

SNS = 0.90,   SPC=0.90 
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SNS = 0.90, SPC = 0.50 
 
The first combination assumes that the population sensitivity and the population specificity of 
the test assay are reasonably high.  The second combination assumes that the population 
sensitivity of the test assay is reasonably high but that the assay results in a sizable number of 
false positives.  For each combination of SNS and SPC the assumed value of J is assumed to be 
0.10, 0.05, or 0.01.  This results in six combinations of population characteristics. 
 
 For each combination of population parameters SNS, SPC, and J the assumed numbers of 
true positive and true negative chemicals sampled was set at n+ = 10, 25, 50, 100 and n– = 10, 25, 
50, 100.  The Monte Carlo results for each parameter combination are displayed in an individual 
table.  In each table the population values of sensitivity, specificity, positive predictivity, and 
negative predictivity are shown at the top.  For each of the 16 combinations of n+ and n– and each 
of the Cooper statistics the Monte Carlo sample based mean, standard deviation, and lower and 
upper 95% confidence bounds are displayed. 
 
 Corresponding to each of the six tables three figures are included.  Each figure displays 
the Monte Carlo based confidence intervals on each of the four Cooper statistics as a function of 
sample size.  In the first figure it is assumed that equal numbers of positive and negative 
chemicals were sampled: n+ = n– = 10, 25, 50, 100.  In the second figure it is assumed that n– was 
held fixed at 25 and n+ = 10, 25, 50, 100.  The third figure it is assumed that n+ was held fixed at 
25 and n– = 10, 25, 50, 100. 
 
 In each of these tables and figures it is assumed that the chemicals were sampled 
independently from subpopulations of true positive and true negative chemicals.  Following the 
results section it is discussed how the sensitivity might be anticipated to be modified if the test 
assay results are assumed to be correlated among the test chemicals. 
 
 
Results     
 
 Tables 1 to 3 display 95% confidence intervals associated with SNS=0.9, SPC=0.9, and J 
= 0.01, 0.05, 0.1.  These confidence intervals are also displayed graphically in Figures 1-a to 3-c.  
In these figures the horizontal reference lines (dotted) correspond to the population values of the 
Cooper statistics. 
 
 For given population values of SNS and SPC and with the stratified sampling design 
assumed in this study, the precision of the sensitivity and specificity estimates depends only on 
the sample sizes and not on J.  The precision of the sensitivity estimate depends on n+ and the 
precision of the specificity estimate depends on n–.  When  n+ and n– are 10 or 25 the confidence 
intervals on SNS and SPC are very wide.  Thus inferences about these parameters are imprecise.  
The improvement in precision gained by increasing sample size from 25 to 50 is not much better 
than that obtained by increasing sample size from 10 to 25.  Very little improvement in precision 
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is gained by increasing sample size from 50 to 100. 
 
 Positive predictivity and negative predictivity depend on J and well as on SNS and SPC.  
Positive predictivity is relatively low.  For SNS and SPC equal to 0.90 it decreases with J, from 
PP=0.5 when J=0.1 to PP=0.08 when J=0.01.  This means that if the test assay infers that the 
chemical is positive, there is considerable probability that it in fact is negative.  This probability 
of error increases as J decreases.   Precision of inference about PP is sensitive to n– (Figures 1, 2, 
3-c) but not to n+ (Figures 1, 2, 3-b).  For n– = 10 or 25 the confidence intervals on PP are so 
wide as to be uninformative.  Not until n– = 100 are the confidence intervals sufficiently narrow 
to be able to infer that the positive predictivity of the test assay is low. 
 
 Negative predictivity is very high.  It increases from NP=0.99 when J=0.1 to NP=0.999 
when J=0.01.  This means that if the test assay infers that the chemical is negative, there is very 
considerable probability that it in fact is negative.  Precision of inference about NP is sensitive to 
n+ (Figures 1, 2, 3-b) but not to n- (Figures 1, 2, 3-c).  NP can be determined to be high even 
when  n+ = 10 or 25. 
 
 Tables 4 to 6 display 95% confidence intervals associated with SNS=0.9, SPC=0.5, and J 
= 0.01, 0.05, 0.1.  These confidence intervals are also displayed graphically in Figures 4-a to 6-c.  
In these figures the horizontal reference lines (dotted) correspond to the population values of the 
Cooper statistics. 
 
 Since the specificity of the test is assumed to be lower than in the previous discussion, 
more chemicals would be anticipated to be misclassified.  This implies that with SPC=0.5 both 
the positive predictivity and the negative predictivity are lower than when SPC=0.9.  Negative 
predictivity is still very high, going from NP=0.98 when J=0.1 to NP=0.998 when J=0.01.  
Positive predictivity is very low, going from PP=0.17 when J=0.1 to PP=0.018 when J=0.01.  
This again implies that if the test assay infers that the chemical is negative there is a very high 
probability that it in fact is negative.  However if the test assay infers that the chemical is 
positive, the probability is still high that it in fact is negative. 
 
 When n-=10 or n-=25 the expected confidence interval on SPC is too wide to permit 
precise inferences to be made.  The inference precision is a little better when n- exceeds 50 but 
there is little improvement in precision between n-=50 and n-=100.  It is necessary to sample at 
least n-=50 true negative chemicals or better n-=100 true negative chemicals in order to make 
reasonably precise inferences about SPC. 
 
 Inference precision about positive predictivity is primarily sensitive to n- and less 
sensitive to n+ .  Positive predictivity is low, and this can be inferred even with n-=10 true 
negative chemicals.  However to precisely estimate positive predictivity requires at least n-=50 
true negative chemicals or better yet  n-=100 true negative chemicals. 
 
   Inference precision about negative predictivity is good even when n- and n+ are 10 or 25.  
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It can be inferred that negative predictivity is high.  Inference precision improves some between 
n-=10 and n-=25, but little beyond that.  For example when J=0.1 and  n-= n+=10, the expected 
lower confidence bound on positive predictivity is 0.90 (population value=0.98).  If n-= n+ 
increase to 25, the expected lower confidence bound increases to 0.95.  If n-= n+ further increase 
to 100, the expected lower confidence bound increase to 0.95, the expected lower confidence 
bound increases to 0.96. 
 
 In summary when SPC=0.5 and J is less than 0.1, it is necessary to sample at least n-=50 
true negative chemicals to precisely estimate SPC.  Positive predictivity is very low and negative 
predictivity is very high, each of which can be inferred based on n- and n+ equal to 10 or 25 
chemicals but it requires 50 or more chemicals to estimate the parameters precisely. 
 
 
Correlated Responses 
 
 The Monte Carlo sampling study and the resulting tables and figures were based on the 
assumption that the chemicals drawn from the population are independent of one another with 
respect to their reference status.  That is the reference probability that a given chemical is 
positive is J or the test assay probability is SNS irrespective of the reference toxicity status of the 
other chemicals in the sample. 
 
 In some situations the population can be divided into families such that the chemicals 
within a family would be expected to be more similar to one another with respect to reference 
toxicity status than chemicals that were drawn from different families.  For example a family 
might consist of a subclass of chemicals with related chemical structure.  In general the presence 
of dependence among chemicals degrades the inference precision relative to that from 
independent chemicals.  It results in a reduced effective sample size.      
 
 Let F denote the family (i.e. chemical subclass)  from which the chemical was drawn.  
Suppose that the probability that the chemical is positive given that it was drawn from family F = 
f is denoted by Bf.  The families F chosen for the sample are assumed to be random, so {BF} are 
also random variables.  Assume that the mean and variance of BF are 
 

E(BF) = J 
Var(BF) = N J(1-J)      (0 #N #1) 

 
This expression for the mean and variance has the intuitively reasonably characteristic that the 
overall mean across all families is the overall proportion of positive chemicals, J, and Var(BF) is 
0 if J=0 or if J=1.  (Note that none of the values  J, N, or BF can be observed.) 
 
 If m chemicals are drawn from the same family, f, their overall average response 
 

pf  / (3Xi)/m 
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has mean J and variance [J(1-J)/m][1 + (m-1)N].  The parameter N can be considered a 
correlation among the chemicals from the same family.  If N=0 the chemicals from the same 
family are m independent chemicals.  If N=1 the chemicals from the same family are perfectly 
correlated and so there is an effective sample size of 1, irrespective of the number of chemicals 
sampled.  In this situation all the chemicals from the family would either be positive or all would 
be negative. 
 
 In general the situation lies somewhere in between.  The effect of positive correlation is 
to increase the increase the variability of the estimates relative to what it would be if the 
chemicals were independent.  This reduces the effective sample size so that the estimation 
precision obtained from say 50 correlated chemicals might be no more than that which would 
obtained from say 20 uncorrelated chemicals. 
 
 The effective sample size of independent chemicals, meff, corresponding to sampling  m 
chemicals with correlation N can be calculated by equating the variance expressions.   Namely 

 
[J(1-J)]/meff = [1 + (m-1)N] [J(1-J)]/m 

 
this implies that 
 

meff = m/[1 + (m-1)N] 
 
For example if m=50 and N = 0.10 then meff = 50/5.9 = 8.5 .10. 
 
 To get an intuitive feeling for the anticipated extent of degradation in effective sample 
size due to correlation among the chemicals, assume that a sample of n+ chemicals is drawn from 
the subpopulation of chemicals with positive reference status.  Assume that the sample contains 
5 chemicals from each of 10 subfamilies, with correlation N=0.5 within each subfamily and 
independence among different subfamilies.  An average correlation among the n+ =50 chemicals 
can approximated as 0.5 among the 10H[(5H4)/2] pairs of chemicals from the same family 
relative to the total of [(50H49/2] pairs among the 50 chemicals.  Then Navg would be calculated 
as 
 

   
Navg = 0.5H{10H[(5H4)/2]}/[(50H49/2] = 0.04 

 
Entering the expression for meff with m=50, Navg = 0.04 yields meff = 50/2.96 = 16.9 . 17.  Thus 
estimated inference sensitivity based on this sample of n+ = 50 correlated chemicals would be 
based on the table and figure entries midway between n+ = 10 and n+ = 25. 
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DISCUSSION 
 
 This report discusses the results of a Monte Carlo study to estimate the inference 
sensitivity concerning the performance of a test assay as compared to a reference assay, that can 
be obtained from samples of various numbers and mixes of reference positive and reference 
negative chemicals.  The precision of the assay is expressed in terms of Cooper statistics.  
Estimates of the precision of inferences about the Cooper statistics are presented in a series of 
tables and figures which show trends as a function of the numbers of reference positive and 
reference negative sampled chemicals vary. 
   
 The Monte Carlo study results suggest that it is important to have reasonable sized 
samples, n+ and n-, of both the positive and negative chemicals.  This is because the inference 
precision for both the sensitivity and negative predictivity parameters depend primarily on n+, 
whereas the inference precision for the specificity and positive predictivity parameters depend 
mostly on n-. 
 
 It does not appear that sampling one to two dozen chemicals will produce precise 
inferences about the Cooper statistics.   
 
 Two situations were considered, one where both the sensitivity and specificity for the test 
assay are relatively high and the other where the specificity is low.  In either case the sensitivity 
and specificity parameters cannot be precisely determined based on just n+ and n- equal to 10 or 
25 chemicals.  At least 50 to 100 chemicals in each category are need for precise determinations. 
 
 The positive predictivity is very low, particularly when the specificity is low.  It further 
decreases as the proportion of true positives decreases.  Precise inferences about positive 
predictivity require at least n-=100 negative chemicals.  Thus the test assay must be regarded as 
an initial screen which is expected to predict many false positives.  One cannot declare a 
chemical to be positive solely on the basis of this test assay. 
 
 Negative predictivity is very high and increases as the proportion of true positives 
decreases.  Negative predictivity can be determined to be high based on just n+ = n- =10 
chemicals but at least n+ = n- =25 are required in order to obtain precise estimates. 
 
 The tables and figures in report as well as the majority of the discussion assume that the 
sampled chemicals are random samples from the set of all reference positive and the set of all 
reference negative chemicals.  Correlations among the sampled chemicals, e.g. by selecting the 
sampled chemicals from the same chemical subclasses, will degrade the inference precision.  An 
approximate expression is given to convert a sample size with correlated observations to a 
reduced “effective” sample size of independent chemicals.  This permits estimates of inference 
sensitivity to be obtained from the results presented in the tables and figures.  The estimates of 
inference precision given in this report, based on the assumption of independent chemicals, thus 
represent upper bounds on the inference precision that would be expected to be actually obtained 
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from samples of chemicals. 
 
 
Reference 
 
Cooper, J.A., Saracci, R., and Cole, P. (1979).  Describing the validity of carcinogen screening 
tests. British Journal of Cancer 39, 87-89.  
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Table 1. Means, Standard Deviations, and 95% Confidence Intervals for Cooper Statistics. Alternative Numbers of 
Positive (N1) and Negative (N2) Reference Chemicals. Sensitivity=0.9, Specificity=0.9, Probability of True 
Positive Reference=0.10. 

 
 
 
          Sensitivity(=0.9)   Specificity(=0.9)        Pos. Pred.(=0.500)                  Neg Pred.(=0.988) 
 N1  N2    Mean (Std)          95% CI          Mean (Std)          95% CI           Mean (Std)           95% CI          Mean (Std)          95% CI 
 
 10  10   0.900(0.096)     (0.700, 1.000)     0.901(0.092)     (0.700, 1.000)      0.622(0.287)      (0.250, 1.000)     0.988(0.012)     (0.960, 1.000) 
     25   0.900(0.096)     (0.700, 1.000)     0.901(0.058)     (0.760, 1.000)      0.549(0.175)      (0.294, 1.000)     0.988(0.012)     (0.962, 1.000) 
     50   0.900(0.096)     (0.700, 1.000)     0.901(0.041)     (0.820, 0.980)      0.524(0.118)      (0.333, 0.833)     0.988(0.012)     (0.963, 1.000) 
    100   0.900(0.096)     (0.700, 1.000)     0.901(0.029)     (0.840, 0.950)      0.511(0.082)      (0.370, 0.690)     0.988(0.011)     (0.964, 1.000) 
 
 25  10   0.902(0.062)     (0.760, 1.000)     0.901(0.092)     (0.700, 1.000)      0.623(0.286)      (0.246, 1.000)     0.988(0.008)     (0.973, 1.000) 
     25   0.902(0.062)     (0.760, 1.000)     0.901(0.058)     (0.760, 1.000)      0.550(0.174)      (0.299, 1.000)     0.988(0.007)     (0.972, 1.000) 
     50   0.902(0.062)     (0.760, 1.000)     0.901(0.041)     (0.820, 0.980)      0.525(0.116)      (0.341, 0.830)     0.988(0.007)     (0.973, 1.000) 
    100   0.902(0.062)     (0.760, 1.000)     0.901(0.029)     (0.840, 0.950)      0.513(0.080)      (0.377, 0.681)     0.988(0.007)     (0.972, 1.000) 
 
 50  10   0.901(0.043)     (0.820, 0.980)     0.901(0.092)     (0.700, 1.000)      0.623(0.286)      (0.246, 1.000)     0.988(0.005)     (0.976, 0.998) 
     25   0.901(0.043)     (0.820, 0.980)     0.901(0.058)     (0.760, 1.000)      0.550(0.174)      (0.303, 1.000)     0.988(0.005)     (0.977, 0.997) 
     50   0.901(0.043)     (0.820, 0.980)     0.901(0.041)     (0.820, 0.980)      0.525(0.116)      (0.347, 0.833)     0.988(0.005)     (0.977, 0.997) 
    100   0.901(0.043)     (0.820, 0.980)     0.901(0.029)     (0.840, 0.950)      0.513(0.079)      (0.379, 0.681)     0.988(0.005)     (0.977, 0.997) 
 
100  10   0.901(0.031)     (0.840, 0.960)     0.901(0.092)     (0.700, 1.000)      0.623(0.286)      (0.246, 1.000)     0.988(0.004)     (0.980, 0.994) 
     25   0.901(0.031)     (0.840, 0.960)     0.901(0.058)     (0.760, 1.000)      0.550(0.174)      (0.300, 1.000)     0.988(0.004)     (0.980, 0.995) 
     50   0.901(0.031)     (0.840, 0.960)     0.901(0.041)     (0.820, 0.980)      0.525(0.116)      (0.348, 0.833)     0.988(0.004)     (0.980, 0.995) 
    100   0.901(0.031)     (0.840, 0.960)     0.901(0.029)     (0.840, 0.950)      0.513(0.078)      (0.382, 0.676)     0.988(0.004)     (0.981, 0.995) 
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Table 2. Means, Standard Deviations, and 95% Confidence Intervals for Cooper Statistics. Alternative Numbers of 
Positive (N1) and Negative (N2) Reference Chemicals. Sensitivity=0.9, Specificity=0.9, Probability of True 
Positive Reference=0.05. 

 
 
 
          Sensitivity(=0.9)   Specificity(=0.9)       Pos. Pred.(=0.321)                  Neg Pred.(=0.994) 
 N1  N2    Mean (Std)          95% CI          Mean (Std)          95% CI           Mean (Std)           95% CI          Mean (Std)          95% CI 
 
 
 10  10   0.900(0.096)     (0.700, 1.000)     0.901(0.092)     (0.700, 1.000)      0.518(0.357)      (0.136, 1.000)     0.994(0.006)     (0.981, 1.000) 
     25   0.900(0.096)     (0.700, 1.000)     0.901(0.058)     (0.760, 1.000)      0.392(0.202)      (0.165, 1.000)     0.994(0.006)     (0.982, 1.000) 
     50   0.900(0.096)     (0.700, 1.000)     0.901(0.041)     (0.820, 0.980)      0.353(0.121)      (0.191, 0.703)     0.994(0.006)     (0.982, 1.000) 
    100   0.900(0.096)     (0.700, 1.000)     0.901(0.029)     (0.840, 0.950)      0.336(0.077)      (0.218, 0.513)     0.994(0.006)     (0.982, 1.000) 
 
 25  10   0.902(0.062)     (0.760, 1.000)     0.901(0.092)     (0.700, 1.000)      0.518(0.356)      (0.134, 1.000)     0.994(0.004)     (0.987, 1.000) 
     25   0.902(0.062)     (0.760, 1.000)     0.901(0.058)     (0.760, 1.000)      0.392(0.202)      (0.168, 1.000)     0.994(0.004)     (0.986, 1.000) 
     50   0.902(0.062)     (0.760, 1.000)     0.901(0.041)     (0.820, 0.980)      0.354(0.120)      (0.197, 0.698)     0.994(0.004)     (0.987, 1.000) 
    100   0.902(0.062)     (0.760, 1.000)     0.901(0.029)     (0.840, 0.950)      0.337(0.075)      (0.223, 0.503)     0.994(0.004)     (0.987, 1.000) 
 
 50  10   0.901(0.043)     (0.820, 0.980)     0.901(0.092)     (0.700, 1.000)      0.518(0.356)      (0.134, 1.000)     0.994(0.003)     (0.988, 0.999) 
     25   0.901(0.043)     (0.820, 0.980)     0.901(0.058)     (0.760, 1.000)      0.392(0.201)      (0.171, 1.000)     0.994(0.003)     (0.989, 0.999) 
     50   0.901(0.043)     (0.820, 0.980)     0.901(0.041)     (0.820, 0.980)      0.354(0.120)      (0.201, 0.703)     0.994(0.003)     (0.989, 0.999) 
    100   0.901(0.043)     (0.820, 0.980)     0.901(0.029)     (0.840, 0.950)      0.337(0.074)      (0.224, 0.503)     0.994(0.003)     (0.989, 0.999) 
 
100  10   0.901(0.031)     (0.840, 0.960)     0.901(0.092)     (0.700, 1.000)      0.518(0.356)      (0.134, 1.000)     0.994(0.002)     (0.990, 0.997) 
     25   0.901(0.031)     (0.840, 0.960)     0.901(0.058)     (0.760, 1.000)      0.393(0.201)      (0.169, 1.000)     0.994(0.002)     (0.991, 0.997) 
     50   0.901(0.031)     (0.840, 0.960)     0.901(0.041)     (0.820, 0.980)      0.354(0.120)      (0.202, 0.703)     0.994(0.002)     (0.991, 0.997) 
    100   0.901(0.031)     (0.840, 0.960)     0.901(0.029)     (0.840, 0.950)      0.337(0.074)      (0.226, 0.497)     0.994(0.002)     (0.991, 0.998) 
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Table 3. Means, Standard Deviations, and 95% Confidence Intervals for Cooper Statistics. Alternative Numbers of 
Positive (N1) and Negative (N2) Reference Chemicals. Sensitivity=0.9, Specificity=0.9, Probability of True 
Positive Reference=0.01. 

 
 
 
          Sensitivity(=0.9)   Specificity(=0.9)        Pos. Pred.(=0.083)                  Neg Pred.(=0.999) 
 N1  N2    Mean (Std)          95% CI          Mean (Std)          95% CI           Mean (Std)           95% CI          Mean (Std)          95% CI 
 
 10  10   0.900(0.096)     (0.700, 1.000)     0.901(0.092)     (0.700, 1.000)      0.390(0.446)      (0.029, 1.000)     0.999(0.001)     (0.996, 1.000) 
     25   0.900(0.096)     (0.700, 1.000)     0.901(0.058)     (0.760, 1.000)      0.161(0.234)      (0.036, 1.000)     0.999(0.001)     (0.996, 1.000) 
     50   0.900(0.096)     (0.700, 1.000)     0.901(0.041)     (0.820, 0.980)      0.106(0.094)      (0.043, 0.312)     0.999(0.001)     (0.996, 1.000) 
    100   0.900(0.096)     (0.700, 1.000)     0.901(0.029)     (0.840, 0.950)      0.091(0.033)      (0.051, 0.168)     0.999(0.001)     (0.997, 1.000) 
 
 25  10   0.902(0.062)     (0.760, 1.000)     0.901(0.092)     (0.700, 1.000)      0.390(0.445)      (0.029, 1.000)     0.999(0.001)     (0.997, 1.000) 
     25   0.902(0.062)     (0.760, 1.000)     0.901(0.058)     (0.760, 1.000)      0.161(0.233)      (0.037, 1.000)     0.999(0.001)     (0.997, 1.000) 
     50   0.902(0.062)     (0.760, 1.000)     0.901(0.041)     (0.820, 0.980)      0.106(0.094)      (0.045, 0.308)     0.999(0.001)     (0.997, 1.000) 
    100   0.902(0.062)     (0.760, 1.000)     0.901(0.029)     (0.840, 0.950)      0.091(0.033)      (0.052, 0.162)     0.999(0.001)     (0.997, 1.000) 
 
 50  10   0.901(0.043)     (0.820, 0.980)     0.901(0.092)     (0.700, 1.000)      0.390(0.445)      (0.029, 1.000)     0.999(0.001)     (0.998, 1.000) 
     25   0.901(0.043)     (0.820, 0.980)     0.901(0.058)     (0.760, 1.000)      0.161(0.233)      (0.038, 1.000)     0.999(0.000)     (0.998, 1.000) 
     50   0.901(0.043)     (0.820, 0.980)     0.901(0.041)     (0.820, 0.980)      0.106(0.094)      (0.046, 0.312)     0.999(0.000)     (0.998, 1.000) 
    100   0.901(0.043)     (0.820, 0.980)     0.901(0.029)     (0.840, 0.950)      0.091(0.032)      (0.053, 0.162)     0.999(0.000)     (0.998, 1.000) 
 
100  10   0.901(0.031)     (0.840, 0.960)     0.901(0.092)     (0.700, 1.000)      0.390(0.445)      (0.029, 1.000)     0.999(0.000)     (0.998, 0.999) 
     25   0.901(0.031)     (0.840, 0.960)     0.901(0.058)     (0.760, 1.000)      0.161(0.233)      (0.037, 1.000)     0.999(0.000)     (0.998, 1.000) 
     50   0.901(0.031)     (0.840, 0.960)     0.901(0.041)     (0.820, 0.980)      0.106(0.094)      (0.046, 0.312)     0.999(0.000)     (0.998, 1.000) 
    100   0.901(0.031)     (0.840, 0.960)     0.901(0.029)     (0.840, 0.950)      0.091(0.032)      (0.053, 0.160)     0.999(0.000)     (0.998, 1.000) 
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Table 4. Means, Standard Deviations, and 95% Confidence Intervals for Cooper Statistics. Alternative Numbers of 
Positive (N1) and Negative (N2) Reference Chemicals. Sensitivity=0.9, Specificity=0.5, Probability of True 
Positive Reference=0.10. 

 
 
          Sensitivity(=0.9)   Specificity(=0.5)        Pos. Pred.(=0.167)                  Neg Pred.(=0.978) 
 N1  N2    Mean (Std)          95% CI          Mean (Std)          95% CI           Mean (Std)           95% CI          Mean (Std)          95% CI 
 
 10  10   0.900(0.096)     (0.700, 1.000)     0.496(0.155)     (0.200, 0.800)      0.179(0.060)      (0.100, 0.333)     0.975(0.041)     (0.900, 1.000) 
     25   0.900(0.096)     (0.700, 1.000)     0.498(0.098)     (0.320, 0.680)      0.171(0.034)      (0.115, 0.258)     0.978(0.022)     (0.923, 1.000) 
     50   0.900(0.096)     (0.700, 1.000)     0.499(0.069)     (0.360, 0.640)      0.168(0.025)      (0.122, 0.226)     0.978(0.021)     (0.926, 1.000) 
    100   0.900(0.096)     (0.700, 1.000)     0.499(0.049)     (0.400, 0.600)      0.167(0.021)      (0.124, 0.207)     0.978(0.021)     (0.930, 1.000) 
 
 25  10   0.902(0.062)     (0.760, 1.000)     0.496(0.155)     (0.200, 0.800)      0.179(0.059)      (0.107, 0.338)     0.974(0.047)     (0.929, 1.000) 
     25   0.902(0.062)     (0.760, 1.000)     0.498(0.098)     (0.320, 0.680)      0.171(0.032)      (0.122, 0.250)     0.978(0.015)     (0.947, 1.000) 
     50   0.902(0.062)     (0.760, 1.000)     0.499(0.069)     (0.360, 0.640)      0.169(0.022)      (0.131, 0.219)     0.978(0.014)     (0.949, 1.000) 
    100   0.902(0.062)     (0.760, 1.000)     0.499(0.049)     (0.400, 0.600)      0.168(0.017)      (0.137, 0.203)     0.979(0.013)     (0.950, 1.000) 
 
 50  10   0.901(0.043)     (0.820, 0.980)     0.496(0.155)     (0.200, 0.800)      0.179(0.058)      (0.109, 0.333)     0.974(0.046)     (0.938, 0.996) 
     25   0.901(0.043)     (0.820, 0.980)     0.498(0.098)     (0.320, 0.680)      0.171(0.031)      (0.124, 0.246)     0.977(0.011)     (0.952, 0.996) 
     50   0.901(0.043)     (0.820, 0.980)     0.499(0.069)     (0.360, 0.640)      0.169(0.021)      (0.134, 0.216)     0.978(0.010)     (0.956, 0.996) 
    100   0.901(0.043)     (0.820, 0.980)     0.499(0.049)     (0.400, 0.600)      0.168(0.016)      (0.140, 0.200)     0.978(0.010)     (0.957, 0.996) 
 
100  10   0.901(0.031)     (0.840, 0.960)     0.496(0.155)     (0.200, 0.800)      0.179(0.058)      (0.109, 0.335)     0.974(0.046)     (0.938, 0.991) 
     25   0.901(0.031)     (0.840, 0.960)     0.498(0.098)     (0.320, 0.680)      0.171(0.030)      (0.124, 0.244)     0.977(0.009)     (0.957, 0.991) 
     50   0.901(0.031)     (0.840, 0.960)     0.499(0.069)     (0.360, 0.640)      0.169(0.021)      (0.135, 0.216)     0.978(0.007)     (0.961, 0.991) 
    100   0.901(0.031)     (0.840, 0.960)     0.499(0.049)     (0.400, 0.600)      0.168(0.015)      (0.142, 0.200)     0.978(0.007)     (0.963, 0.990) 
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Table 5. Means, Standard Deviations, and 95% Confidence Intervals for Cooper Statistics. Alternative Numbers of 
Positive (N1) and Negative (N2) Reference Chemicals. Sensitivity=0.9, Specificity=0.5, Probability of True 
Positive Reference=0.05. 

 
 
 
          Sensitivity(=0.9)   Specificity(=0.5)        Pos. Pred.(=0.087)                  Neg Pred.(=0.990) 
 N1  N2    Mean (Std)          95% CI          Mean (Std)          95% CI           Mean (Std)           95% CI          Mean (Std)          95% CI 
 
 10  10   0.900(0.096)     (0.700, 1.000)     0.496(0.155)     (0.200, 0.800)      0.095(0.038)      (0.050, 0.191)     0.987(0.034)     (0.950, 1.000) 
     25   0.900(0.096)     (0.700, 1.000)     0.498(0.098)     (0.320, 0.680)      0.089(0.020)      (0.058, 0.141)     0.989(0.011)     (0.962, 1.000) 
     50   0.900(0.096)     (0.700, 1.000)     0.499(0.069)     (0.360, 0.640)      0.088(0.015)      (0.062, 0.122)     0.989(0.010)     (0.964, 1.000) 
    100   0.900(0.096)     (0.700, 1.000)     0.499(0.049)     (0.400, 0.600)      0.087(0.012)      (0.063, 0.110)     0.990(0.010)     (0.966, 1.000) 
 
 25  10   0.902(0.062)     (0.760, 1.000)     0.496(0.155)     (0.200, 0.800)      0.095(0.037)      (0.054, 0.195)     0.986(0.045)     (0.965, 1.000) 
     25   0.902(0.062)     (0.760, 1.000)     0.498(0.098)     (0.320, 0.680)      0.089(0.018)      (0.062, 0.136)     0.989(0.007)     (0.974, 1.000) 
     50   0.902(0.062)     (0.760, 1.000)     0.499(0.069)     (0.360, 0.640)      0.088(0.013)      (0.067, 0.117)     0.990(0.007)     (0.975, 1.000) 
    100   0.902(0.062)     (0.760, 1.000)     0.499(0.049)     (0.400, 0.600)      0.087(0.010)      (0.070, 0.107)     0.990(0.007)     (0.976, 1.000) 
 
 50  10   0.901(0.043)     (0.820, 0.980)     0.496(0.155)     (0.200, 0.800)      0.095(0.037)      (0.055, 0.191)     0.986(0.045)     (0.969, 0.998) 
     25   0.901(0.043)     (0.820, 0.980)     0.498(0.098)     (0.320, 0.680)      0.089(0.018)      (0.063, 0.134)     0.989(0.005)     (0.977, 0.998) 
     50   0.901(0.043)     (0.820, 0.980)     0.499(0.069)     (0.360, 0.640)      0.088(0.012)      (0.068, 0.116)     0.989(0.005)     (0.978, 0.998) 
    100   0.901(0.043)     (0.820, 0.980)     0.499(0.049)     (0.400, 0.600)      0.087(0.009)      (0.071, 0.106)     0.990(0.005)     (0.979, 0.998) 
 
100  10   0.901(0.031)     (0.840, 0.960)     0.496(0.155)     (0.200, 0.800)      0.095(0.036)      (0.055, 0.192)     0.986(0.045)     (0.969, 0.996) 
     25   0.901(0.031)     (0.840, 0.960)     0.498(0.098)     (0.320, 0.680)      0.089(0.018)      (0.063, 0.133)     0.989(0.004)     (0.979, 0.996) 
     50   0.901(0.031)     (0.840, 0.960)     0.499(0.069)     (0.360, 0.640)      0.088(0.012)      (0.069, 0.115)     0.989(0.004)     (0.981, 0.995) 
    100   0.901(0.031)     (0.840, 0.960)     0.499(0.049)     (0.400, 0.600)      0.087(0.008)      (0.073, 0.106)     0.990(0.003)     (0.982, 0.995) 
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Table 6. Means, Standard Deviations, and 95% Confidence Intervals for Cooper Statistics. Alternative Numbers of 
Positive (N1) and Negative (N2) Reference Chemicals. Sensitivity=0.9, Specificity=0.5, Probability of True 
Positive Reference=0.01. 

 
 
 
          Sensitivity(=0.9)   Specificity(=0.5)        Pos. Pred.(=0.018)                  Neg Pred.(=0.998) 
 N1  N2    Mean (Std)          95% CI          Mean (Std)          95% CI           Mean (Std)           95% CI          Mean (Std)          95% CI 
 
 10  10   0.900(0.096)     (0.700, 1.000)     0.496(0.155)     (0.200, 0.800)      0.020(0.009)      (0.010, 0.043)     0.997(0.032)     (0.990, 1.000) 
     25   0.900(0.096)     (0.700, 1.000)     0.498(0.098)     (0.320, 0.680)      0.019(0.004)      (0.012, 0.031)     0.998(0.002)     (0.992, 1.000) 
     50   0.900(0.096)     (0.700, 1.000)     0.499(0.069)     (0.360, 0.640)      0.018(0.003)      (0.012, 0.026)     0.998(0.002)     (0.993, 1.000) 
    100   0.900(0.096)     (0.700, 1.000)     0.499(0.049)     (0.400, 0.600)      0.018(0.003)      (0.013, 0.023)     0.998(0.002)     (0.993, 1.000) 
 
 25  10   0.902(0.062)     (0.760, 1.000)     0.496(0.155)     (0.200, 0.800)      0.020(0.009)      (0.011, 0.044)     0.996(0.045)     (0.993, 1.000) 
     25   0.902(0.062)     (0.760, 1.000)     0.498(0.098)     (0.320, 0.680)      0.019(0.004)      (0.012, 0.029)     0.998(0.001)     (0.995, 1.000) 
     50   0.902(0.062)     (0.760, 1.000)     0.499(0.069)     (0.360, 0.640)      0.018(0.003)      (0.014, 0.025)     0.998(0.001)     (0.995, 1.000) 
    100   0.902(0.062)     (0.760, 1.000)     0.499(0.049)     (0.400, 0.600)      0.018(0.002)      (0.014, 0.023)     0.998(0.001)     (0.995, 1.000) 
 
 50  10   0.901(0.043)     (0.820, 0.980)     0.496(0.155)     (0.200, 0.800)      0.020(0.009)      (0.011, 0.043)     0.996(0.045)     (0.994, 1.000) 
     25   0.901(0.043)     (0.820, 0.980)     0.498(0.098)     (0.320, 0.680)      0.019(0.004)      (0.013, 0.029)     0.998(0.001)     (0.995, 1.000) 
     50   0.901(0.043)     (0.820, 0.980)     0.499(0.069)     (0.360, 0.640)      0.018(0.003)      (0.014, 0.025)     0.998(0.001)     (0.996, 1.000) 
    100   0.901(0.043)     (0.820, 0.980)     0.499(0.049)     (0.400, 0.600)      0.018(0.002)      (0.015, 0.022)     0.998(0.001)     (0.996, 1.000) 
 
100  10   0.901(0.031)     (0.840, 0.960)     0.496(0.155)     (0.200, 0.800)      0.020(0.009)      (0.011, 0.044)     0.996(0.045)     (0.994, 0.999) 
     25   0.901(0.031)     (0.840, 0.960)     0.498(0.098)     (0.320, 0.680)      0.019(0.004)      (0.013, 0.029)     0.998(0.001)     (0.996, 0.999) 
     50   0.901(0.031)     (0.840, 0.960)     0.499(0.069)     (0.360, 0.640)      0.018(0.003)      (0.014, 0.024)     0.998(0.001)     (0.996, 0.999) 
    100   0.901(0.031)     (0.840, 0.960)     0.499(0.049)     (0.400, 0.600)      0.018(0.002)      (0.015, 0.022)     0.998(0.001)     (0.997, 0.999) 
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Figure 1-a.  95% Confidence Intervals for Cooper Statistics as a Function of  Numbers of  Positive and Negative Reference 

Chemicals.  Based on 1,000 Monte Carlo Samples.   Sensitivity=0.9, Specificity=0.9, Probability of True Positive 



 

 

19 

Reference=0.1.  N1 = N2.   (Dotted Reference Lines are the Assumed Cooper Statistics Population Values). 

 
Figure 1-b.  95% Confidence Intervals for Cooper Statistics as a Function of  Numbers of  Positive and Negative Reference 
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Chemicals.  Based on 1,000 Monte Carlo Samples.   Sensitivity=0.9, Specificity=0.9, Probability of True Positive 
Reference=0.1.  N2 = 25.   (Dotted Reference Lines are the Assumed Cooper Statistics Population Values). 

  
Figure 1-c.  95% Confidence Intervals for Cooper Statistics as a Function of  Numbers of  Positive and Negative Reference  

Chemicals.  Based on 1,000 Monte Carlo Samples.   Sensitivity=0.9, Specificity=0.9, Probability of True Positive 
Reference=0.1.   N1=25.   (Dotted Reference Lines are the Assumed Cooper Statistics Population Values). 
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Figure 2-a.  95% Confidence Intervals for Cooper Statistics as a Function of  Numbers of  Positive and Negative Reference 
Chemicals.  Based on 1,000 Monte Carlo Samples.   Sensitivity=0.9, Specificity=0.9, Probability of True Positive 
Reference=0.05.  N1 = N2.   (Dotted Reference Lines are the Assumed Cooper Statistics Population Values). 
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Figure 2-b.  95% Confidence Intervals for Cooper Statistics as a Function of  Numbers of  Positive and Negative Reference 

Chemicals.  Based on 1,000 Monte Carlo Samples.   Sensitivity=0.9, Specificity=0.9, Probability of True Positive 
Reference=0.05.  N2 = 25.   (Dotted Reference Lines are the Assumed Cooper Statistics Population Values). 
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Figure 2-c.  95% Confidence Intervals for Cooper Statistics as a Function of Numbers of Positive and Negative Reference Chemicals.  
Based on 1,000 Monte Carlo Samples.   Sensitivity=0.9, Specificity=0.9, Probability of True Positive Reference=0.05.  N1 
= 25.   (Dotted Reference Lines are the Assumed Cooper Statistics Population Values). 
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Figure 3-a.  95% Confidence Intervals for Cooper Statistics as a Function of Numbers of Positive and Negative Reference Chemicals.  
Based on 1,000 Monte Carlo Samples.   Sensitivity=0.9, Specificity=0.9, Probability of  True Positive Reference=0.01.  N1 
= N2.   (Dotted Reference Lines are the Assumed Cooper Statistics Population Values). 
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Figure 3-b.  95% Confidence Intervals for Cooper Statistics as a Function of Numbers of Positive and Negative Reference Chemicals.  
Based on 1,000 Monte Carlo Samples.   Sensitivity=0.9, Specificity=0.9, Probability of  True Positive Reference=0.01.  N2 
= 25.   (Dotted Reference Lines are the Assumed Cooper Statistics Population Values). 

Figure 3-c.  95% Confidence Intervals for Cooper Statistics as a Function of Numbers of Positive and Negative Reference Chemicals.  
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Based on 1,000 Monte Carlo Samples.   Sensitivity=0.9, Specificity=0.9, Probability of  True Positive Reference=0.01.  N1 
= 25.   (Dotted Reference Lines are the Assumed Cooper Statistics Population Values). 
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Figure 4-a.  95% Confidence Intervals for Cooper Statistics as a Function of Numbers of Positive and Negative Reference Chemicals.  

Based on 1,000 Monte Carlo Samples.   Sensitivity=0.9, Specificity=0.5, Probability of  True Positive Reference=0.10.  N1 
= N2.   (Dotted Reference Lines are the Assumed Cooper Statistics Population Values). 
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Figure 4-b.  95% Confidence Intervals for Cooper Statistics as a Function of Numbers of Positive and Negative Reference Chemicals.  

Based on 1,000 Monte Carlo Samples.   Sensitivity=0.9, Specificity=0.5, Probability of  True Positive Reference=0.10.  N2 
= 25.   (Dotted Reference Lines are the Assumed Cooper Statistics Population Values). 
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Figure 4-c.  95% Confidence Intervals for Cooper Statistics as a Function of Numbers of Positive and Negative Reference Chemicals.  
Based on 1,000 Monte Carlo Samples.   Sensitivity=0.9, Specificity=0.9, Probability of  True Positive Reference=0.10.  N1 
= 25.   (Dotted Reference Lines are the Assumed Cooper Statistics Population Values). 
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Figure 5-a.  95% Confidence Intervals for Cooper Statistics as a Function of Numbers of Positive and Negative Reference Chemicals.  

Based on 1,000 Monte Carlo Samples.   Sensitivity=0.9, Specificity=0.5, Probability of  True Positive Reference=0.05.  N1 
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= N2.   (Dotted Reference Lines are the Assumed Cooper Statistics Population Values). 
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Figure 5-b.  95% Confidence Intervals for Cooper Statistics as a Function of Numbers of Positive and Negative Reference Chemicals.  
Based on 1,000 Monte Carlo Samples.   Sensitivity=0.9, Specificity=0.5, Probability of  True Positive Reference=0.05.  N2 
= 25.   (Dotted Reference Lines are the Assumed Cooper Statistics Population Values). 
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Figure 5-c.  95% Confidence Intervals for Cooper Statistics as a Function of  Numbers of Positive and Negative Reference Chemicals.  

Based on 1,000 Monte Carlo Samples.   Sensitivity=0.9, Specificity=0.5, Probability of  True Positive Reference=0.05.  N1 
= 25.   (Dotted Reference Lines are the Assumed Cooper Statistics Population Values). 
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Figure 6-a.  95% Confidence Intervals for Cooper Statistics as a Function of  Numbers of  Positive and Negative Reference Chemicals.  

Based on 1,000 Monte Carlo Samples.   Sensitivity=0.9, Specificity=0.9, Probability of  True Positive Reference=0.01.  N1 
= N2.   (Dotted Reference Lines are the Assumed Cooper Statistics Population Values). 
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Figure 6-b.  95% Confidence Intervals for Cooper Statistics as a Function of  Numbers of  Positive and Negative Reference Chemicals.  
Based on 1,000 Monte Carlo Samples.   Sensitivity=0.9, Specificity=0.5, Probability of  True Positive Reference=0.01.  N2 
= 25.   (Dotted Reference Lines are the Assumed Cooper Statistics Population Values). 
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Figure 6-c.  95% Confidence Intervals for Cooper Statistics as a Function of  Numbers of  Positive and Negative Reference Chemicals.  

Based on 1,000 Monte Carlo Samples.   Sensitivity=0.9, Specificity=0.5, Probability of  True Positive Reference=0.01.  N1 
= 25.   (Dotted Reference Lines are the Assumed Cooper Statistics Population Values). 


